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AbItrad-Solutions of the type introduced by St.·Venant for linearly elastic prisms have some limited
status as solutions of minimum energy although, commonly. there are other solutions with lower eRerBY.
Our purpose is to clarify this.

t. INTRODUCTION
In 1966, Sternberg and Knowles[l] explored the possibility that the St.-Venant solutions for
torsion, bending, etc. minimize the strain energy, among solutions for prisms with free sides,
yielding the same resultant forces and moments. They established some theorems of this kind,
for homogeneous, isotropic materials. However, this minimization occurs only if the solutions
involved in the comparison are subject to additional, quite restrictive conditions. We refer the
reader to their paper for details. Later, Maisonneuve[2] characterized the solutions which do
minimize the energy. They obtain from solving a boundary value problem wherein the
displacement is prescribed to be zero on one end, to have the form of an infinitesimal rigid
displacement at the other. Of course, the translation and rotation involved must be adjusted to
give desired resultants, which is feasible. Also, to Maisonneuve's solutions, we can add the
usual trivial rigid displacement; his boundary conditions normalize the choice in a particular
way. The St.·Venant solution for torsion of a circular prism made of homogeneous isotropic
material satisfies such boundary conditions, but it is easy to see that most of the St.-Venant
solutions do not.

We don't find fault with these analyses. However, rather commonly, there is good intuitive
reason to exclude from consideration many solutions. If such considerations exclude those
characterized by Maisonneuve, some other solution can become the minimizer, in the set
allowed. One such restriction, which is plausible in many particular situations, leaves some
solutions of St.-Venant type as minimizers. Our purpose is to elaborate this.

Consider common tensile tests, for example. Usually, the specimen is not really a prism, but
a central part is, ends being shaped to accomodate grips. With St.·Venant, we must agree that
the details of loading on the nominal ends of the prismatic part are not known. However, very
often, the symmetry of the specimen and loading device are such that, if we were given the load
distribution on one end, or a suitable part of it, we could reasonably infer the distribution on the
opposite end. Similar remarks apply to other physical situations, such as cases of combined
tension and torsion, or bending. In such cases, the St.·Venant solutions often meet the
symmetry requirements, and it makes sense to compare them only with other solutions
exhibiting this symmetry. A theorem given below covers such a type of symmetry.

2. SOLUTIONS OF ST.·VENANT TYPE

Consider a prism. Referred to rectangular Cartesian coordinates, with the X3 axis parallel to
its generators, it will occupy a region of the form

Dx[O,L], (1)

where D is some resion in the X,-X2 plane, and L is the length of the prism. We presume
constitutive equations of the form used in linear elasticity theory, viz
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wbere W is the strain energy per unit volume. tli and Elj are the stress and strain components,
related to the displacements Uj by

As usual, we assume that

W>Oif EiJ#O.

Ail solutions considered must satisfy the equilibrium equations

tijJ =0 in Dx[O, L],

and free boundary conditions on the lateral surface

ti/llj =Oon aDx[O, LJ,

(4)

(5)

(6)

(7)

where " is the unit normal. Here, Latin indices take on values 1-3. Below, Greek indices will
take on values 1and 2. With customary assumptions of smoothness of D and the solutions, the
traction vectors t/3(x.", L) and -t/3(x.", 0) on tbe ends will give balancing forces and moments,
as indicated by

(8)

(9)

(l0)

By a solution 0/ St.· Venant type, we shall mean one which results from the semi·inverse
assumption that the strain is independent of Xl,

(lI)

St.·Venant'.s solutions for torsion, tension and bending are of this type, but his flexure solutions
are not. Similar kinds of solutions can be expected to occur for materials which are anisotropic
and inhomogeneous, as long as the A's occurring in (2) are independent of Xl, and are
reasonably smooth functions of Xl and X2. For homogeneous, anisotropic materials, pertinent
analyses are given by Lekhnitskii [3]. It is a relatively simple problem in kinematics to
characterize the displacement fields which are compatible with (ll). He ({3], eqn 17.12) gives
tbe answer. Like other writers, he takes as primitive the assumption that the stresses are
independent of Xl. For materials of the type indicated above, this is equivalent, but one must
check to see which analyses are purely kinematical, and which make some use of equilibrium
equations, etc. His equation ({3], 17.12) seems to involve elastic moduli, but they can be eliminated
by redefining arbitrary constants. In any even., .ouch displacements have the form

(12)

where the functions Ui(x.., 0) are arbitrary. The constant vectors a, b and c must satisfy the
following conditions:

(13)
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An analogous result for finite deformations is given by Ericksen ([4], Section 3). Some of the
mechanics there treated is not well-known in linear theory, although obvious adaptations do
apply.

Let
aj =(aj +b,L}L, 1
{Jj = ejL J

Then

clearly represents a rigid displacement, and we have

(14)

(1S)

(16)

a fact which plays an important role in later analysis. When (12) applies, Maisonneuve's
solutions will satisfy (16) with u,(x..,O)::: 0, and some choice of constants aj and (Jj, but, in
general, will not be of the form (12). Of course, solutions of the St.-Venant type will involve a
subset of (12), those which also satisfy (6) and (7), for some material of the type indicated
above. For these, the stresses will be independent of .13, so (10) requires that the resultant force
be normal to the end,

(17)

Of course, it is for this reason that one needs some different type of solution for the problems
of flexure, even if we accept St.·Venant's Principle. On the other hand, we do expect to have
solutions which are useful for describing' tension, bending, or torsion.

3. MINIMIZATION

For the kinds of problems for which we are likely to consider using the solutions of
St.-Venant type described above, it seems to us probable that, rather commonly, symmetry
considerations will suggest that the actual load distribution will conform to the equation

(18)

Again, this assumption implies (17), so it can hardly be appropriate for problems of flexure. Put
in physical terms, we must decide whether tractions applied at opposite ends of a generator are
equal in magnitude and opposite in sign. If so, (18) applies. Let bars denote any solution
compatible with (18), giving rise to the same resultant force and moment as a solution of the
St.-Venant type, with displacement Uj.

Then
(19)

(20)

(21)

will give a solution with zero resultants. Calculating the total energy E, the integral of W over
the body, we will have, in obvious notation,

E=E+£+ f iijujJ,
JDrlo.Ll

Dx[O,L)

by using elementary properties of W which follow from (2) and (3).
We now employ (6), (7), (15) and (16) as well as the fact that t3 confirms to (18), to calculate that

f t,11liJ = ( {,3UjIL =aj f {,3(x...L) +f3I (~~)(x...1 .
JDrIO.LJ JD 0 JD JD x)-L
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However, since iii is a solution with zero resultant force and moment, these integrals vanish,
so

E-E= £e;,O. (22)

Furthermore, from the time of Kirchhoff, it has been familiar that the energy of a linearly
elastic solution can vanish only if it is a trivial solution, representing a rigid displacement, a
consequence of (5). Thus the inequality is strict, unless ilj and UI are so related. In this sense,
then, the St.-Venant solutions do minimize the energy, among the solutions which conform to
(18) and have matching resultants.

Incidentally, our analysis also gives a quick proof that two solutions of the St.-Venant type,
with matching resultants, are trivially related. Of course, this can be established by other
methods, and the observation is hardly new. The analysis leading to Maisonneuve's results, is
much the same. In (21), the integral involved also vanishes if iii = 0 at one end and, at the other,
UI has the form of a rigid displacement, whether or not (18) applies. Neither is it important that
the elastic moduli be independent of X3' From the two results, such solutions satisfy (18) if and
only if they are of St.-Venant type, when the moduli are independent of X3.

Of course, one might consider different restrictions, as alternatives to (18), which are
suggested by other notions of symmetry. Sometimes, for example, we have reason to think that
loads on one end will display some symmetry with respect to reflections. If such restrictions
imply (18), and do not exclude solutions of the St.-Venant type, they will, of course, continue to
be minimizers. With respect to some of the more likely and obvious symmetries of this kind,
solutions of the St.-Venant type seem to easily accept the limitations. Some types of flexure
problems do involve rather obvious symmetries, as can be seen by considering a beam with
weights hung from each end, suitably supported near its center. We have not given serious
thought to such problems, but the need to account for central supporting clearly complicates
analysis.
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